Domino tableaux, Schützenberger involution, and the symmetric group action
نویسندگان
چکیده
We define an action of the symmetric group S[ n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight β does not depend on the permutation of the weight β. A bijective proof of the well-known result due to J. Stembridge that the number of self–evacuating tableaux of a given shape and weight β = (β1, . . . , β[ n+1 2 ], β[ n2 ], . . . , β1), is equal to that of domino tableaux of the same shape and weight β = (β1, . . . , β[ n+1 2 ]) is given.
منابع مشابه
ar X iv : q - a lg / 9 70 90 10 v 1 4 S ep 1 99 7 August 7 , 1997 DOMINO TABLEAUX , SCHÜTZENBERGER INVOLUTION , AND THE SYMMETRIC GROUP ACTION
We define an action of the symmetric group S[ n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight β does not depend on the permutation of the weight β. A bijective proof of the well-known result due to J. Stembridge that the number of self–evacuating tableaux of a given shape and weight β = (β1, . . . , β[ n+1 2 ], β[ n2 ], . . . , β1), is equal to that o...
متن کاملKey polynomials, invariant factors and an action of the symmetric group on Young tableaux
We give a combinatorial description of the invariant factors associated with certain sequences of product of matrices, over a local principal ideal domain, under the action of the symmetric group by place permutation. Lascoux and Schützenberger have defined a permutation on a Young tableau to associate to each Knuth class a right and left key which they have used to give a combinatorial descrip...
متن کاملq - al g / 97 09 01 0 v 2 15 S ep 1 99 7 DOMINO TABLEAUX , SCH
We deene an action of the symmetric group S n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight 0 does not depend on the permutation of the weight 0. A bijective proof of the well-known result due to J. Stembridge that the number of self{evacuating tableaux of a given shape and weight = (1 ; : : : ; n+1 2 ] ; n 2 ] ; : : : ; 1), is equal to that of domino...
متن کاملActions of the Symmetric Group Generated by Comparable Sets of Integers and Smith Invariants
Lascoux and Schützenberger have shown that there exists a unique action of the symmetric group generated by the commutation of the column lengths of a twocolumn tableau and preserving the plactic class. We describe more general operators on pairs of comparable subsets of {1, . . . , n} which commute their cardinalities, and we prove that those operators define an action of the symmetric group b...
متن کاملSplitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts
We propose a new combinatorial description of the product of two Schur functions. In the particular case of the square of a Schur function SI, it allows to discriminate in a very natural way between the symmetric and antisymmetric parts of the square. In other words, it describes at the same time the expansion on the basis of Schur functions of the plethysms S2(SI) and A2(SI) . More generally o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 225 شماره
صفحات -
تاریخ انتشار 2000